HoloKids: Holography for Kids

Understanding Holograms and Lasers for Students.

Archive of Holoworld:

HoloWorld went online on Tue, 04 Dec 1993 21:29:02 GMT (as the Internet Webseum of Holography) during the era of dial-up 14.4 modems and NCSA Mosaic browsers. Chronologically archived copies of the entire HoloWorld web site can be found at the Internet Archive Project. It had been archived 601 times between 5 Nov, 1996 and 7 Dec, 2016. As such, it preceded the Internet Archive itself by nearly three years: | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |

antique hand pointer Holograms and Microscopes Holograms and Microscopes

Holograms and Microscopes: See how 3D laser holograms can be viewed under 3D stereoscopic microscopes -- as if the original object were really there. But the object isn't there at all, it is a holographic image. The magnification can also be self-contained within the hologram itself. See and read about many examples.

antique hand pointer My Facebook Page Wonders of the Bible Facebook Page by Frank DeFreitas

Join over 100,000 enthusiasts from around the world who enjoy following my regular posts on Facebook. You can see and learn about holograms, lasers, optics, micro and nano technology, 3D lenticulars, stereoscopics, and much more. Hope to see you there!

antique hand pointer Free Student Study Guide Lasers, Holography and Photonics Primer

Lasers, Holography and Photonics Primer: Here is a great PDF student study guide that you can read and / or download to help with your understanding of lasers, optics, and holography. It also contains history and bios of some of the early researchers in the field. You may use it for homework assignments. Please give credit to holoworld.

antique hand pointer Holograms, Light and the Word of God Holograms, Light and the Word of God

Holograms, Light and the Word of God: Energy and power are contained in the light spoken into existence by Jesus Christ on Day One of Creation. He is the awesome and powerful Creator of the universe. This paper / lesson shows the connection between holograms, light, and the Word of God.

HoloKids: Holography for Kids

My name is Frank DeFreitas (bio), and I am a holographer, which means I work in the field of holography, and I make (and teach about) laser holograms! For over 30 years, I have worked with literally tens of thousands of students just like you. I am now retired, but I continue to help make youth aware of the future of lasers, holography and holograms.

By arriving here, you have found the original "HoloKids" for the science of holograms on the Net. The following information has been updated for the 2017 - 2018 school year. Parts are also taken from my classroom booklet "Introduction to Holography", which was used by my students at The Franklin Institute in Philadelphia, Pennsylvania. You have my permission to print and use this page for reports. Please give credit to holoworld.com.

To start off, I'd like to give you an idea of what lasers and holograms are. Ready? Okay! Let's GO . . .

Do you think that holograms are only for big kids and adults? I say "no way"! I have visited many elementary and middle schools bringing lasers and holograms to students just like you. Holograms are going to be a big part of your future someday. And I hope that with this page, I can help you learn a little bit about them.

What is Holography?

HOLOGRAPHY is the science of making a three-dimensional image of an object using the special light from a LASER. Unlike photography, which only records the brightness and contrast of an object, a HOLOGRAM records brightness, contrast and DIMENSION (through what is known as phase information). This allows holography to display the final image in true 3D. It is the most accurate 3D image in the world today. You do not need any special glasses to view a hologram. Although the hologram is most famous for 3D images, holograms can also be of a 2D image as well (see next paragraph). What both share in common is that they were created through the use of a LASER.


Get ready for news that might surprise you: holograms do not have to be 3D. That's right! In fact, in 2014, many of the holograms produced do not have anything to do with 3D at all. You see, there are many technical and scientific uses of holograms that are not related to 3D images. One type of use is for what are called "holographic optical elements" or "HOE's". These types of holograms usually do not contain any type of object image at all. They are used to alter and direct light in some special way. If you make a hologram of a lens, the holographic image of the lens acts just like the real lens! Some day soon, and in some cases already today, when you store your photos and documents in "the cloud", your information is actually being written to holographic storage drives. In other words, your data (or bits and bytes of information) is written to a hologram. So please remember this: holograms do not have to contain 3D images. You won't find many web sites mentioning this fact, but it is a very important fact for any young scientist and technician!

The Science of Holography

The science of holography begins with physics: notably light and optics. The first hologram was conceived of, and produced in 1948 by Dr. Dennis Gabor, a researcher at the Imperial College of London. It was in 1971 that Dr. Gabor received the Nobel prize (in physics) for his invention of holography. Holograms themselves are a type of optical element that are created with the use of special light from lasers (more on this later). When creating a hologram, one works with lenses, mirrors, beamsplitters, pinholes, and light-sensitive recording media. Chemistry is also involved through the development of silver gelatin film and glass plates. Other scientific disciplines include polarization, constructive and destructive interference, reflection, refraction, and coherence. Mathematics come into play when setting up the recording angles, taking beam path measurements, and calculating exposure times.

Early Holograms

The earliest holograms required a laser to both record and view the image. It wasn't long however, before new techniques allowed the hologram, although still requiring a laser to record, to be viewed with ordinary light (such as a light bulb). Also, many different types of holograms were developed, each with their own technique used to produce them.

The excitement of viewing a hologram is only exceeded by the thrill of actually making one. Today, in 2015, it is fairly easy to make small holograms using inexpensive and easy-to-find equipment. Students from elementary school to high school are making holograms. The expensive lasers of the past have been replaced by the inexpensive laser pointers of today. You'll find a lot of information here at holoworld.com about making your own holograms. And, if I may take the liberty of saying so, I wrote the world's #1 selling hologram book: Shoebox Holography. So you're in the right place.

What is a HOLOGRAM?

Well, a hologram is like a picture. Sort of. You see, when you look at a picture, like a photograph, it is flat. If you took a regular picture of a big marble, and it had a smaller marble behind it, you would not be able to look around the big marble to see the little one.

With a hologram, you are able to look around the big marble and see the little one behind it. Its true. That's because a hologram is in 3D. The letter "D" in "3D" stands for the word "dimension". The "3" in "3D" stands for how many "dimensions" something has.

A photo, a piece of paper, or even this computer screen, is 2D, or two dimensions: (1) up and down, and (2) left and right. When something has 3D, like the world in which we live, or a hologram, it has an added dimension: (1) up and down, (2) left and right, and (3) forwards and backwards, or DEPTH. So . . . when we say that a hologram has 3 dimensions, it means we can see up and down, and left and right, just like a picture or photo . . . but we can also look "into" the hologram because the hologram, and the objects that it contains, have depth.

Looking at a certain types of holograms is just like looking at something that is really in front of your eyes. In fact, some holograms are so real that you want to take your hand and touch the object in it, but your hand goes right through thin air. Imagine getting up to get a soda while you're watching a holographic television show. When you walk across your living room, you'd walk right through the actors!

3D Laser Hologram
A LASER illuminates a 3D Hologram of chess pieces in my laboratory.

How do holograms impact our lives?

1. With holography, we can test all kinds of things . . . from automobile engines, to aircraft tires, to artificial bones and joints. This type of holography is called "interferometry", and the resulting hologram is called an "interferogram" (inter-fero-gram).

2. Holography is also used in medical imaging where doctors can look at a 3-dimensional cat scan and actually go in and take measurements within the holographic image (because the 3D image is made entirely out of light).

3. Very simple (and colorful) holograms are used on consumer packaging materials such as cereal and toothpaste boxes, and a host of other items. This increases their attraction on the supermarket and store shelves.

4. Holograms are used for security for credit cards and for identifying manufactured objects such as clothing to help cut down on conterfeiting.

5. Holographic Optical Elements (HOE's) are used by airplane pilots for navigation. It allows them to keep their eyes on the sky or runway, while still being able to read their instrumentation . . . which appears to float in front of their cockpit window. This feature is already available as an option on several automobiles.

6. Holographic lenses and contacts can make one lens provide several different functions, such as correcting regular vision and also act as magnifiers for reading -- all in the same lens, and throughout the entire lens at the same time.

7. Holograms can be made into portraits of people, pets, etc.

8. Artists use holography to express their creativity and are shown in art galleries around the world.

9. Holograms are used in printing for magazine and book covers. National Geographic (American Eagle) as well as Sports Illustrated (Michael Jordon) have been famous examples.

10. They can be used for point-of-purchase advertising, taking the place of a photograph of a product or service in a store or supermarket. It appears as if the product is right in front of you.

11. Holograms can be used for data storage such as holographic memory. The entire contents of the Library of Congress can be stored in the area the size of a sugar cube.

12. My latest work is with laser micro holograms: these are some of the smallest image recordings in the world today (the width of a single human hair). The study is known as "Laser Holographic Steganography".

Holograms in Communication Technologies

As a tool for visual communication, holograms provide the ultimate in realism, and also in the abstract. With a hologram, two solid three dimensional objects can both occupy the same three dimensional space, at the same time. So situations that are not physically possible in the "real" world, are possible with holograms. This certainly leads to some fanciful work by artists! Products can be depicted as if they were physically present, except that your hand passes right through the images. Full-color, computer-generated holograms are becoming better all the time, as computer processing capabilities increase. And true holographic television has been demonstrated on a small experimental scale. With the advent of diode lasers, more amateur and hobbyist holographers are now setting up their own hologram studios, very similar to the amateur and hobbyist photography boom of the 1950's, '60's, and '70's. While 3D image holograms on product packaging has declined in recent years, the use of holograms for product security and authentication continues to grow.

The Technology of Holography

Holography is the most technologically advanced science in the world. Especially computer-generated holograms that are written by calculating the three dimensional optical wavefronts that would come off of imaginary objects and scenes. Remember, 3D wavefronts must be calculated from every possible position of the viewer. Unlike the simulated 3D of computer screens, televisions and motion pictures, holographic images must be reproduced in TRUE three dimensional fidelity. If it were possible to zoom in on a holographic object from afar, one would be able to resolve surface bacteria on that object. THAT is the resolving power of holography, and gives some indication of just how much information a hologram stores. From the precise manufacturing tolerances for diode lasers, to the surface coating of the most precise mirrors, at its upper end holography is truly the ultimate in futuristic media production.

If you want to study holography, you will find an entire universe of learning possibilities. You do not need to know everything about the science of holography in order to make a hologram. Just as you do not need to know the light-path mathematics behind your digital cameras optical system to take great pictures. Holography does, however, contain the potential to provide a little bit of everything, from the technical to the artistic. It is a great team activity, especially when combining science students with visual arts students. It allows for dialog between these two groups that normally does not take place in the workplace. But the best holographer of all is the person who excels in both the scientific and the artistic. This is the requirement of the future: to be the best you can be in both. Holography provides the opportunity to do just that!

Here are a few common questions and answers for holograms: What is LIGHT? And why is it important with HOLOGRAMS?

In order to understand a hologram (and how to make one), it is also important to understand light. Why? Because the holographic image is made up entirely of light.

What is light? The truth is, no one really knows for certain. Much of light still remains a mystery. One of the problems in trying to find out is that we cannot actually see it. What we see is the *effect* that light produces by hitting an object and bouncing back to our eyes. This is called "reflection". But where is the light? Part of the difficulty in detecting and measuring light lies in its speed. At 186,000 miles per second, and never ever at rest, it is hard to get a hold on it! But what we do know about light gives us enough information to make holography possible.

types of light
White light has many different colors or wavelengths.
Many lasers are a single color or wavelength.

One of the more common instruments we use to produce light is the lightbulb. An ordinary household lightbulb produces light that we perceive as primarily white light. This is because, in actuality, the bulb is producing many different colors (or wavelengths) at the same time which, when combined, produce white. The light is also traveling away from the lightbulb in many different, random directions. There is very little structure or uniformity in each of the colors or waves. We call this type of light "incoherent" light. Incoherent light is incapable of producing any holographic image (a hologram).

To produce a hologram, we need a light source that produces what is known as a "coherent" type of light. The requirements needed for a source of light to be considered coherent is that the light is of a single frequency and wavelength. Prior to 1960, there were no known sources of true coherent light that could provide great depth in a hologram. The introduction of the LASER changed all this.

What is a LASER? And why is it important to HOLOGRAMS?

laser tube
This computer drawing of a working laser is from 1994.
Back then, the Internet was just starting to show images!
(we didn't have images on the early Internet -- just text!).

The term LASER is actually an acronym, which means that each letter in the word represents a word itself. For instance, the term LASER stands for Light Amplification by Stimulated Emission of Radiation. The term "radiation" in our case stands for light in the visible part of the spectrum, not the harmful radiation that is commonly known associated with the word (although light can be harmful just as anything can!).

Laser light is a special type of light. First, it is what is known as monochromatic, or one single color or wavelength. Second, and as mentioned already above, it is coherent, or all of the waves are traveling out of the tube in a very controlled and uniform manner.

The bottom line is that lasers are very simple tools. Especially the lasers that are used to make most holograms. A laser is a very thin glass tube, about the size of a straw that you use to drink a soda. In this glass tube is a gas. Not like the gas you put in your car . . . but the kind of "gas" that the air we breathe is made of. There are two gases in most of the lasers used to make holograms. They are: Helium, pronounced: Heel Lee Um. And, Neon, pronounced: Knee Ahn. The laser is called a Helium-Neon Laser.

Now, when you plug the laser into the wall and turn it on, electricity passes through this gas and it begins to glow, in fact, it glows just like a neon pizza sign. But remember, we have a laser. And if we have a laser, then we better have a laser beam!

The way we get a laser beam out of this tube is we take two mirrors and put them at the ends of the tube: one at one end, and another at the other end. This makes it so that light begins to bounce back and forth between the two mirrors. But WAIT!!! We still don't have a laser beam coming out of the laser!!!! Don't worry, here's how they do it:

One of the mirrors makes ALL of the light bounce off of it (called reflection). The other mirror, while reflecting MOST of the light back into the tube, lets SOME of the light pass through. And the light that passes through, comes out as the laser beam. Very simple, huh?

Why do you need a LASER to make a HOLOGRAM?

Right now, we still need lasers to MAKE holograms, because only a laser can provide the special light that is needed. But we do not need a laser to VIEW a hologram. When I saw my first hologram, I was in the 8th grade and the year was 1968. Back then, you needed a laser to make a hologram, and you also needed a laser to see most holograms.

Recently, you can now make holograms with a little laser pointer. The same laser pointers that you see selling in stores. This has opened holography up to many more people than before -- even students in elementary school (just like you) are making their own 3-dimensional holograms in their classrooms and in their own holography set-up at home.

What is Holography?

Holography is a technique which allows the recording and playback of true, three-dimensional images. Unlike other 3-D "pictures", holograms provide what is called "parallax". Parallax allows the viewer to move back and forth, up and down, and see different perspectives -- as if the object were actually there.

Holography is much more than just 3D. It has many uses in science and technology. Holograms can be used to store information (holographic data storage), and test various manufactured parts under stress (holography interferometry) with non-destructive testing.

Holography was invented by Dr. Dennis Gabor at the Imperial College of London. In 1971, Dr. Gabor received the Nobel Prize in physics for holography. Originally, Dr. Gabor's hope was to improve the resolution of the scanning electron microscope.

In the early 60's, upon the invention of the LASER, University of Michigan researchers Leith and Upatnieks created the first three-dimensional holographic images. Around this time, Yuri Dennisyuk of the former Soviet Union also began creating holograms that were viewable using ordinary white light.

To this day, holography continues to provide the most accurate depiction of three-dimensional images in the world, along with many scientific and technological applications.

What else should I know about holograms?

A hologram is often described as a three-dimensional picture. More accurately, it is the medium on which the three-dimensional picture is recorded. While this is a good way to get a general idea of what you would experience looking at one, holography provides so much more than what we have come to think of when we think of 3D. At one time, holography was called "laser photography".

Like a traditional photograph, a hologram contains information about the size, shape, brightness and contrast of the object being recorded. But through the use of lasers, and the unique properties of the light they produce, a hologram also contains spatial information. This information is stored in a microscopic and complex pattern of interference within the light sensitive emulsion of the recording media.

The light reflected by a three dimensional object forms a very complicated pattern that is also three dimensional. In order to record the whole pattern, the light used must be highly directional and must be of one color. Such light is called coherent. Because the light from a laser is one color (monochromatic), and leaves the laser with one wave in perfect step with all others, it is perfect for making holograms.

When you shine a light on the hologram, the information that is stored as an interference pattern takes the incoming light and re-creates the original optical wavefront that was relfected off the object. Your eyes and brain now perceive the object as being in front of you once again.

Are all Holograms the Same?

There are many different types and styles of holograms -- each requiring it's own individual technique for production. Some holograms require a laser to view them, others rely only on regular light. There are holograms that show motion, and also holograms that change images as you move by them. Holograms can be in full-color, change color and even project their image out in space toward you when you view them.

As stated above, each hologram has its own individual technique when made. Some holographers know all of the techniques, others specialize in only one. The easiest hologram to make is the "single-beam" hologram. Many holograms that you see in stores and museums are "split-beam" holograms -- many of them copied from holographic masters.

There is a lot to learn and experience when it comes to holography. This is why it is so popular as a hobby for many people.

GO TO: My Online Hologram Class

How are Holograms Made?

Many of the holograms that you see in stores, galleries and other places are made in professional holography laboratories. A typical lab consists of a LASER, a vibration-isolated optical table, lenses, mirrors, optical holders and other assorted equipment. You will also find a dark-room area for processing of the hologram. With amateur and hobbyist holography, you will find the same equipment but it will usually be made by the person who has the lab. It's possible to make very inexpensive holography equipment that rivals the professional equipment in performance. With the advent of using inexpensive laser diodes, it is now possible for more people to become involved with holography.

How can I make my own holograms?

Making your own holograms has never been easier than right now. For many years now, it has been possible to create holograms without the need of expensive lasers and other optical equipment. Inexpensive laser diodes have replaced traditional lasers needed up until now. Many of these diodes can be found in everyday laser pointers which can be purchased across the country for as little as $5.00 (or less).

Using these inexpensive, easy-to-find diodes, I created a system that allows you to create holograms right in your own home, school or office. The system is so portable, it fits into the area the size of a shoebox. In fact, I have named the system Shoebox Holography. I do not produce this system myself, but many companies now offer a variation of it.

What are Holograms Used For?

Holograms have many uses in art, science and technology. You may find holograms on certain product packaging at your local store. Several magazines have featured holograms on their covers. Holograms are found on credit cards, drivers licenses, and even clothing to help stop counterfeiting. It is possible to take flat medical images, such as a CAT scan and have the final image as a three-dimensional hologram. Computer-generated holograms allow engineers and designers to visually see their creations like never before.

How To Make a Hologram

Engineers also use holography to test for fractures and also for quality control during manufacturing. It is called holographic non-destructive testing. Holograms are used in many airplanes, both civilian and military. These holograms provide the pilot with critical information while looking through the cockpits window. It is called a heads-up display. Heads-up displays are now available in certain automobiles as well.

Artists use holography for artistic expression. Many artists feel that exploring the three-dimensional space and pure light that holography offers allows them to convey images and messages that were never before possible with "traditional" media.

Manufacturers use holograms as a form of anti-counterfeiting. Some countries use holograms on their currency for this reason. You'll find holograms on many tickets to events, holograms on your credit cards, and holograms on product packaging.

Holographic data storage relies on holograms to store information. With HDS, you can store the entire contents of the Library of Congress in the area the size of a sugar cube.

Recently I have begun to record holograms that can be viewed under a 3D stereoscopic microscope. This proves that a holographic image can take the place of a real-life, physical object.

The bottom line is this: regardless of whether a hologram contains a three-dimensional image or data, all holograms are used to MANIPULATE LIGHT in some way that is unique to each hologram.

What about TV and Movies?

One of the biggest promises of holography is the dream of holographic television and motion pictures. Unfortunately, we are not quite there yet. A hologram contains a tremendous amount of information . . . and just like the information that you watch on your television, it has to get there somehow. We do not currently have the technology that would allow us to transmit holographic television -- although holographic movies have been experimented with for many years now worldwide.

One day, you will be able to sit down and watch your favorite entertainment holographically projected into your living rooms. Perhaps you will be one of the people that will help make this happen!

How Do I View a Hologram?

If you purchased your hologram in one of the many holography shops across the country, chances are it is a "white-light reflection" hologram. Reflection holograms are popular because you can mat and frame them, and hang them on your wall. In order to view your reflection hologram, you must provide a light source to light up the hologram. This light source is commonly located on your ceiling, such as track lighting. If you do not have track lighting, you may also use one of the inexpensive "clip-on" lamps.

You should place your hologram on the wall at a comfortable height -- taking into consideration both adults and children. It is much easier for a tall person to bend down a little than it is for a shorter person to stretch up to see. A good starting point would be to have the center of your hologram placed between 5-feet 4-inches and 5-feet 8-inches on your wall, measured from the base of the wall. Your light source should come into the hologram at a starting angle of approx. 45-degrees. Different holograms light up at different angles, but 45-degrees is a good place to start. Have someone hold the light in place, and then view the hologram from around 6 feet or so away from the wall. Adjust the incoming angle until you get the best view of the hologram. It is very important that you provide the right bulb to light the hologram. The best bulb to use is a clear halogen bulb, purchased at any home supply center. If a halogen bulb is not possible, you should use a clear incandescent bulb. It is important that the bulb is clear and not frosted. A frosted light source will create a blurred hologram -- as will any florescent lighting. If you'd like to display your hologram on a lamp table, replace your lamp bulb with a clear bulb and have the hologram angled at a 45-degree angle. While this will not give the quality effect of having the hologram on the wall with track lighting, it will allow you to enjoy your hologram if the other methods are not possible.

More Information About a LASER

A LASER is a special source of light that was invented in 1960. The acronym LASER stands for Light Amplification by Stimulated Emission of Radiation. There are many different types of lasers, ranging in size from several football fields to the size of a single grain of salt. There are gas lasers, such as the Helium-Neon and Argon lasers; solid-state lasers, such as the ruby laser; and Semi-conductor lasers such as the laser diodes that are found in CD and DVD players and your CD-ROM drives. Each has it own method of producing laser light.

GO TO: My Online Hologram Class

LASERs produce light that has very special characteristics: First, the light is monochromatic, or a single wavelength/color. There are LASERs that produce several wavelengths/colors at the same time, but usually the wavelengths are separated and used individually. Second, the light from a LASER is coherent. Coherent light has all of it's waves travelling in sync with one another -- like a "wave train". Third, the light is highly collimated into a beam, which means that it takes a lot of distance to notice any divergence or convergence of the light.

What are LASERs Used For?

The uses of lasers in the 21st century are too numerous to mention. Lasers perform tasks as highly diversified as removing a cancerous tumor to laying bricks in a straight line to sending your voice across the country when you talk on the phone. Every day there are more and more jobs that require lasers -- and people to fill those jobs.

If you have a highway near you that is under construction, chances are the engineers are using LASER's to layout the new highway. Police will use LASER's to see how fast you are traveling on the new highway. LASER's can be used to restore paintings that are centuries old -- removing oxidation and grime without touching the actual paint. They are used at your supermarket check-out, scanning your purchase. You can have an old tatoo removed using a laser, or have blemishes and age spots removed.

LASER's have been fired to the moon and bounced back using equipment left there by the Apollo astronauts. They entertain us with LASER light shows. We enjoy music on our CD's, movies on our DVD players and store and retrieve information from our computer's CD-ROM, all though the use of lasers. We then print out our information with LASER printers.

Did you ever have one of the frozen "BBQ" hamburgers for lunch (hopefully not still frozen)? Did you notice the BBQ grill marks on the hamburger? They are not put there from a BBQ grill, they are put there by passing the hamburger over laser beams before packaging! The laser beams burn the lines into the hamburger!

If you have a late model car, all of the body parts were welded together using LASERs attached to robotic arms at the factory.

And the list goes on and on. As you can see, LASER's have become a very important part of all of our lives. And its use will continue to grow well into the next century and beyond.

Are LASERs Dangerous?

LASER light is a very "concentrated" type of light and therefore you should NEVER look directly into the beam no matter how low power the laser is. This includes the popular laser pointers currently on the market.

Military LASERs are so powerful that they can knock missles out of the sky. LASERs can provide enough heat to weld metal parts together -- or actually vaporize others.

The LASERs that you will probably come in contact with in your classroom or as an amateur or hobbyist holographer will commonly fall under the category of low-power LASER. You do not need a lot of LASER power to create holograms. Most of the LASERs used for creating holograms fall in the power range of milliwatts, or thousandths of a watt. A good beginning power is 5mW, or 5-thousanths of one watt. These are very safe LASERs to work with, however, as with all LASERs, you still should never look directly into the beam.

Help keep LASERs and holography safe -- practice good experimental proceedures at all times.

Are Holography LASERs Expensive?

Holography has seen an amazing shift in LASER's since the beginning of 1999. Before then, you needed rather-expensive Helium-Neon lasers to make a hologram. Now, holograms can be created using very inexpensive diode lasers -- such as the diodes found in common laser pointers.

A brand new 5-milliwatt Helium-Neon laser will cost you around $800-900 dollars at present. The same power (5-milliwatt) laser diode can be purchased for around $4 - $5.

This has opened the field of holography to many people who would not otherwise have the chance to begin making their own holograms.

Frank DeFreitas visiting a school with lasers and holograms, 1983
This is me, visiting a school in 1983.

Which LASER is Best for Holography?

For decades, holographers have relied on the expensive Helium-Neon LASER to create holograms. We have now witnessed a shift in this technology with the advent of inexpensive semiconductor (diode) LASERs.

Many years ago, I spent nearly a half-year researching LASER diodes (from low power to high power) for use in holography. I found, without question, that the inexpensive LASER diode is far superior to ANY expensive Helium-Neon LASER that I have ever used.


You are the generation that will see holograms become an everyday experience. They will be present from entertainment, to saving someone's life through holographic medical imaging. Perhaps one day you will become involved with holograms yourself. If you do, I hope that you remember your short time here at the HoloKids web page! However, regardless of what it is that you choose to do, I want to wish you the very best of luck in your journey through life. I like to remember two quotes that were always very important to me: The first is by President Abraham Lincoln and it goes like this: "Whatever you are, be a good one". The second is from Henry Ford: "If you think you can, or if you think you can't, you're right".

One last VERY important message . . . It is very important that you realize that the Internet is filled with misinformation about holograms and what they are. Not just a little bit of misinformation, but a LOT of misinformation. Just because something is 3D, does not mean that it is a hologram. The ONLY time that something can be called a TRUE hologram, is when it is created using the science and technology of HOLOGRAPHY, a Nobel Prize-winning field of study. Then, and only then, can it be a hologram. So . . . beware, okay?

Best Wishes with your Education, Frank DeFreitas (holographer, retired)

Shroud of Turin Laser and Hologram Research
See how the Shroud's cloth fibers can be recorded as 3D laser holograms, duplicated, then sent around the world for examination under 3D stereoscopic microscopes ... without the Shroud ever leaving storage. A unique laser and holographic science and technology application that earned an invited presentation to the New York Microscopical Society in 2017.

Flag Counter


natural laser action in the antediluvian atmosphere
Natural LASER Action in the Antediluvian Atmosphere?


…Noah's Ark Project
…Natural Lasers?
…Book Me!
…Meet Frank
…How To Make A Hologram
…What Are Lasers Used For?
…Collecting Holograms
…Christian 3D History
…Holograms of Biblical Artifacts
…Radio Show
…Art of Light
…Christianity and Emerging Technology
…Holografía en Español

online school of holography

Frank DeFreitas YouTube ChannelHoloKids: Holography for Kids PageHistory of Holography ArchiveFrank DeFreitas Online School of HolographyFrank DeFreitas Bio

bring the family to Frank and Debi's display room in Allentown, PA

School of Holography

"Science is the study of the physical manifestations of God in action."
Frank DeFreitas / 484-387-5320.